1,494 research outputs found

    DETERMINANTS OF THE MAXIMAL MECHANICAL POWER DEVELOPED DURING THE COUNTERMOVEMENT JUMP (CMJ)

    Get PDF
    INTRODUCTION A countermovement (a preparatory movement in the direction opposite to that of the goal) increases performance in explosive movements such as the CMJ. The height of jump and the maximal power relative to body weight have been reported to be significantly correlated. Our previous observations has suggested the take-off technique (the countermovement depth) to affect power rather than height of jump. The purpose of the present study was to determine the influence of the height of jump, of the countermovement depth and of body mass on the maximal mechanical power developed during the positive take-off phase. METHODS Untrained students (56 female and 38 male) volunteered to take part in the CMJ jumping test consisting of 3 jumps performed with one-minute intervals on the computerized Kistler force plate. The subjects were requested to jump on the maximal height possible. Results of the highest jump were selected for each subject for further processing. The following variables were included into statistical analysis: the maximal mechanical power (PmaJ developed during the take-off, the height of jump (H), lowering of the body mass center before the take-off (L). and body mass (mb)' The Shapiro-Wilk test was used to examine the distributions of the tested variables. Pearson's correlation matrix and multiple regression analysis were employed to identity the parameters of the Pmax statistical model. Dolittle's method was used to estimate the contribution of the selected jump variables to the Pmax. RESULTS In both female and male groups the multiple regression procedure (the forward stepwise method) employed all the independent variables studied to construct the regressions equations. both of them proving very highly significant (

    Developing low-cost, reusable solar observation platforms to advance sustainable heliophysics research

    Get PDF
    The objective of this paper is to describe a methodology for cheaper solar observation, which would make it available to research institutions of all sizes. This is done through the use of low cost, reusable components, innovative manufacturing and by using high altitude balloons to transport the payload. The aims of the project are to produce clear, sharp images of the solar chromosphere. This proves that it is possible to produce research-grade images without the need for expensive alternatives such as adaptive optics on ground telescopes or satellites. As well as discussing the technical points of the project, the paper will discuss the technical hurdles encountered before this design iteration and how these have been overcome. The other aims of the project are to facilitate students introduction to the space industry and allow them to practice their skills in a practical manner. This is very different from the work done theoretically in the classroom and exposes students to the challenges of working in industrial teams

    Evidence of environmental strains on charge injection in silole based organic light emitting diodes

    Full text link
    Using d. functional theory (DFT) computations, the authors demonstrated a substantial skeletal relaxation when the structure of 2,5-bis-[4-anthracene-9-yl-phenyl]-1,1-dimethyl-3,4-diphenyl-silole (BAS) is optimized in the gas-phase comparing with the mol. structure detd. from monocrystal x-ray diffraction. The origin of such a relaxation is explained by a strong environmental strains induced by the presence of anthracene entities. Also, the estn. of the frontier orbital levels showed that this structural relaxation affects mainly the LUMO that is lowered of 190 meV in the gas phase. To check if these theor. findings would be confirmed for thin films of BAS, the authors turned to UV photoemission spectroscopy and/or inverse photoemission spectroscopy and electrooptical measurements. The study of the c.d. or voltage and luminance or voltage characteristics of an ITO/PEDOT/BAS/Au device clearly demonstrated a very unusual temp.-dependent behavior. Using a thermally assisted tunnel transfer model, this behavior likely originated from the variation of the electronic affinity of the silole deriv. with the temp. The thermal agitation relaxes the mol. strains in thin films as it is shown when passing from the cryst. to the gas phase. The relaxation of the intramol. thus induces an increase of the electronic affinity and, as a consequence, the more efficient electron injection in org. light-emitting diodes

    Metal-Organic Frameworks in Germany: from Synthesis to Function

    Full text link
    Metal-organic frameworks (MOFs) are constructed from a combination of inorganic and organic units to produce materials which display high porosity, among other unique and exciting properties. MOFs have shown promise in many wide-ranging applications, such as catalysis and gas separations. In this review, we highlight MOF research conducted by Germany-based research groups. Specifically, we feature approaches for the synthesis of new MOFs, high-throughput MOF production, advanced characterization methods and examples of advanced functions and properties

    An environmental analysis of the fast transient AT2018cow and implications for its progenitor and late-time brightness

    Full text link
    The nature of the newly discovered fast blue optical transients (FBOTs) is still puzzling astronomers. In this paper we carry out a comprehensive analysis of the molecular gas, ionized gas and stellar populations in the environment of the nearby FBOT AT2018cow based on ALMA, VLT/MUSE and HST/WFC3 observations. A prominent molecular concentration of 6 (±\pm 1) ×\times 106^6 M⊙M_\odot is found in the vicinity of AT2018cow, which has given rise to two active star-forming complexes with ages of 4 ±\pm 1 Myr and ≲\lesssim2.5 Myr, respectively. Each star-forming complex has a stellar mass of 3 ×\times 105^5 M⊙M_\odot and has photoionized a giant H II region with Hα\alpha luminosity even comparable to that of the 30 Dor mini-starburst region. AT2018cow is spatially coincident with one of the star-forming complexes; however, it is most likely to reside in its foreground since it has a much smaller extinction than the complex. Its progenitor could have been formed at an earlier epoch in this area; if it were from a major star-forming event, the non-detection of the associated stellar population constrains the progenitor's age to be ≳\gtrsim10 Myr and initial mass to be ≲\lesssim 20 M⊙M_\odot. We further find the late-time brightness of AT2018cow is unlikely to be a stellar object. Its brightness has slightly declined from 2 yr to 4 yr after explosion and is most likely to originate from AT2018cow itself due to some powering mechanism still working at such late times.Comment: 13 pages, 10 figures, submitted to MNRA

    Iron, zinc, copper, manganese and chromium in green teas, their transfer to extracts and correlations between contents of elements and bioactive compounds

    Get PDF
    Green tea is used worldwide in the preparation of beverages, but also its extracts rich in bioactive compounds, especially flavan-3-ols, are of increasing interest. In addition to bioactive molecules, green tea represents a source of dietary elements. However, knowledge about their content in extracts is limited. The aim of our research was to determine the extent of transfer of selected elements, i.e., iron (Fe), zinc (Zn), copper (Cu), manganese (Mn), and chromium (Cr), from green teas to their extracts and to investigate whether the main bioactive compounds of the extracts affect this transfer. Twelve commercially available green teas were used in the study. The contents of elements in green teas and their extracts obtained with 80% acetone (v/v) were analysed by inductively coupled plasma optical emission spectroscopy (ICP-OES). High performance liquid chromatography in reverse phase (RP-HPLC) was used to determine contents of caffeine, (–)-epigallocatechin (EGC), (–)-epicatechin (EP), (–)-epigallocatechin gallate (EGCG), and (–)-epicatechin gallate (ECG). The element with the highest content in green teas was Mn (711–1402 µg/g), but its transfer to extracts was the lowest (0.269–0.646%). The mean Fe transfer, second abundant element in teas (115–725 µg/g), was 5.52%. The contents of Mn and Fe in extracts were 5.08–30.2 and 10.7–90.1 µg/g, respectively. Zn, Cu, and Cr were transferred with means of 10.4, 20.0, and 26.2%, respectively, which resulted in their contents in the extracts in the ranges of 5.03–12.6, 1.93–13.8, and 0.128–2.03 µg/g, respectively. The significant positive correlations of Zn content in extracts and/or transfer to extracts with EGCG, EGC and total flavan-3-ols as well as between the same Fe variables and EGC were determined, which suggested that these flavan-3-ols may positively affect the transfer of Fe and Zn from green tea to extracts. In turn, significant but negative correlations were found in the case of Mn and Cu. Future research is needed to identify the causes of the various transfer rate of elements from green teas to extracts
    • …
    corecore